EMELT SZINTỦ ÍRÁSBELI

 ÉRETTSÉGI VIZSGA ADVANCED LEVEL WRITTEN EXAMJAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ KEY AND GUIDE FOR EVALUATION

OKTATÁSI MINISZTÉRIUM MINISTRY OF EDUCATION

Important Information

Formal requirements:

- The papers must be assessed in pen and of different colour than the one used by the candidates. Errors and flaws should be indicated according to ordinary teaching practice.
- The first one among the shaded rectangles next to each question contains the maximal score for that question. The score given by the examiner should be entered into the other rectangle.
- In case of correct solutions, it is enough to enter the maximal score into the corresponding rectangle.
- In case of faulty or incomplete solutions, please indicate the corresponding partial scores within the body of the paper.

Substantial requirements:

- In case of some problems there are more than one solutions outlined with the corresponding marking schemes. However, if you happen to come across with some solution different from those in the assessment bulletin, please identify the parts equivalent to those in the solution provided here and do your marking accordingly.
- The scores in this evaluation guide can be split further. Keep in mind, however, that the number of points awarded for any item can be an integer number only.
- In case of a correct answer and a valid argument the maximal score can be awarded even if the actual solution is less detailed than that in this guide.
- If there is a calculation error or any other flaw in the solution, then the score should be deducted for the actual item where the error has occured. If the candidate is going on working with the faulty intermediate result and the problem has not been changed essentially due to the error, then the subsequent partial scores should be given out.
- If there is a fundamental error within an item (these are separated by double lines in this bulletin), even formally correct steps should not be awarded by any points, whatsoever. However, if the candidate is using the wrong result obtained by the invalid argument throughout the subsequent steps correctly, they should be given the maximal score for the remaing parts if the problem has not been changed essentially due to the error.
- If a measuring unit occurs in braces in this bulletin, the solution is complete even if the candidate does not indicate this unit.
- If there are more than one attempts to solve a problem, there is just one of them (with the highest score) that can be considered in the final assesment.
- You should not give out any bonus points (points beyond the maximal score for a solution or for some part of the solution).
- You should not reduce the score for erroneous calculations or steps unless its results are actually used by the candidate in the course of the solution.
- There are only 4 questions to be marked out of the 5 in part II of this exam paper. Hopefully, the candidate has entered the number of the question not to be marked in the square provided for this purpose. Accordingly, this question should not be assessed even if there is some kind of solution written down in the paper. Should there be any ambiguity about the student's request with respect to the question not to be checked, it is the last one in this problem set, by default, that should not be marked.
I.

1. a)

is $\overrightarrow{C B}(7,3)$.		
The equation of the perpendicular bisector of $B C$ is $7 x+3 y=23$.	1 point	
Solving the simultaneous system formed by the equations of the perpendicular bisectors of $A B$ and that of $B C$, respectively, yields $x=2.9 ; y=0.9$, and thus the circumcentre is $K(2.9,0.9)$.	2 points	
The square of the circumradius is $r^{2}=K C^{2}=2 \cdot 2.9^{2}=16.82$.	1 point	
The equation of the circumcircle is $(x-2.9)^{2}+(y-0.9)^{2}=16.82$.	1 point	
	Total:	$\mathbf{8}$ points

2.		
Denote the length of the edges of the red and the blue cube by a and b, respectively. The surface area of the red cube is $6 a^{2}$ and that of the blue one is $6 b^{2}$.	2 points	
By the condition we have $6 a^{2}=\frac{3}{4} \cdot 6 b^{2}$.	3 points	
Therefore, using the fact that $a>0$ and $b>0$ one gets $a=\frac{\sqrt{3}}{2} b$.	2 points	
Expressing the volume of the red cube in terms of that of the blue one yields $a^{3}=\frac{3 \sqrt{3}}{8} b^{3}$.	3 points	
Since $\frac{3 \sqrt{3}}{8} \approx 0.65$, the volume of the red cube is $\approx 65 \%$ of that of the blue cube.	1 point	
Therefore, the volume of the red cube is about 35% less than that of the blue cube.	1 point	
Total:	12 points	

3. a)

If the roots of the equation $x^{2}-x+p=0$ are x_{1}, x_{2}, then $x_{1}+1, x_{2}+1$ are those of the equation $x^{2}+p x-1=0$.

By the Viéte-formula for the sum of the roots in the equations
$x_{1}+x_{2}=1$ and $\left(x_{1}+1\right)+\left(x_{2}+1\right)=-p$.

2 points \begin{tabular}{l|l|}

\& | These points may also |
| :--- |
| be given if the candidate |
| writes down the roots in |
| parametric form with the |
| help of the quadratic |
| formula |

\hline points \& | These 3 points may also |
| :--- |
| be given if the roots |
| obtained by the |
| quadratic formula are |
| matched correctly. |

\hline
\end{tabular}

Therefore, the only possible value of p is -3.	3 points	
If $p=-3$ then both equations have real roots.	1 point	This l point may also be given if the candidate is checking the discriminant.
	Total:	9 points
b)		
The discriminant of the equation $x^{2}-x+5=0$ is negative and thus it has no real roots.	2 points	
The roots of the equation $x^{2}+5 x-1=0$ are $x_{1}=\frac{-5+\sqrt{29}}{2}(\approx 0.19) ; x_{2}=\frac{-5-\sqrt{29}}{2}(\approx-5.19)$.	2 points	
	Total:	$\mathbf{4}$ points

4. a) (1st. solution)		
Denote the set of scientists publishing in the field of research, education and communication by A, B and C, respectively. The conditions of the question hence can be written as $\|A\|=12, \quad\|B\|=18, \quad\|C\|=17, \quad\|A \cup B \cup C\|=30 .$	1 point	
$\|A \cap B\|+\|B \cap C\|+\|C \cap A\|-3 \cdot\|A \cap B \cap C\|=7$.	2 points	
By virtue of the sieve-formula $\begin{aligned} & 30=\|A \cup B \cup C\|= \\ & =\|A\|+\|B\|+\|C\|-\|A \cap B\|-\|B \cap C\|-\|C \cap A\|+\|A \cap B \cap C\|= \\ & =12+18+17-7-2 \cdot\|A \cap B \cap C\| . \end{aligned}$	3 points	
Therefore, $\|A \cap B \cap C\|=5$.	2 points	
The probability in question is hence $P=\frac{5}{30}=\frac{1}{6}$.	2 points	
Total:	10 points	

II.

Consider, for the calculation of the edge of the room in the roof, the planar section of the pyramid through its vertex and the midpoints of two opposite edges.	2 points	These 2 points may also be given if the diagram shows a clear visual perception of the spatial objects of the question.
This planar section is an isosceles triangle of base 8 meters and edges $4 \sqrt{3}$ meters long, respectively.	1 point	
By Pithagoras' theorem the altitude dropped onto the base of this triangle is $m=4 \sqrt{2}(\mathrm{~m})$.	1 point	
Using the labellings of the diagram, the right triangles $C F B$ and $H G B$ are similar,	1 point	
because their common acute angle is $F B C$.	1 point	
If x denotes the length of the edge of the cube (it is the length of the side of the square in the planar section) then, by similarity, $\frac{x}{4-\frac{x}{2}}=\frac{4 \sqrt{2}}{4}=\sqrt{2}$,	1 point	

and hence $x=\frac{8 \sqrt{2}}{2+\sqrt{2}} \approx 3.3(\mathrm{~m})$.	1 point	
The area of the base of the room is $T=x^{2}=\frac{64}{3+2 \sqrt{2}} \approx 11 \mathrm{~m}^{2}$.	1 point	
Total:	9 points	
b)		
From the previous results the height of the pyramid is $m=4 \sqrt{2}$.	1 point	
The volume of the roof (in fact, it is the pyramid) is hence $V_{r}=\frac{8^{2} \cdot 4 \sqrt{2}}{3} \mathrm{~m}^{3}=\frac{256 \sqrt{2}}{3} \mathrm{~m}^{3} \approx 120.68 \mathrm{~m}^{3}$.	2 points	The corresponding points are due even if the approxiamate values are not written down.
The volume of the cube is $V_{c}=\left(\frac{8 \sqrt{2}}{2+\sqrt{2}}\right)^{3} \mathrm{~m}^{3}=\frac{1024 \sqrt{2}}{(2+\sqrt{2})^{3}} \mathrm{~m}^{3} \approx 36.38 \mathrm{~m}^{3} .$	2 points	
The ratio of the two volumes is hence $\frac{V_{c}}{V_{r}}=\frac{12}{(2+\sqrt{2})^{3}} \approx 0.3015 .$	1 point	
Thus the room fills approximately 30% of the airspace.	1 point	
Total:	7 points	

6. a)	1 point	
The equation to be solved is $-x^{2}+10 x-22=-x+6$. Collecting the terms: $x^{2}-11 x+28=0$.	2 points	
The solutions are $x_{1}=4, x_{2}=7$.	1 point	
Total:		
$\mathbf{3}$ points		
b)	2 points	
The slopes of the tangents at the points of intersection are $m_{1}=f^{\prime}\left(x_{1}\right)$ and $m_{2}=f^{\prime}\left(x_{2}\right)$, respectively. $f^{\prime}(x)=-2 x+10$.	2 points	
Hence $m_{1}=f^{\prime}(4)=2$ and $m_{2}=f^{\prime}(7)=-4$.	1 point	The corresponding points may be given for any correct form of the equations of the tangents.
The two graphs intersect at $M_{1}(4,2)$ and $M_{2}(7,-1)$.	1 point	Total:
The equations of the corresponding tangents are $e_{1}: y-2=2(x-4)$ that is $y=2 x-6$,	$e_{2}: y+1=-4(x-7)$, that is $y=-4 x+27$.	

7. a)

Let the lengths of the distance in kms between
Szeged - Cegléd and Cegléd - Budapest be s_{1} and s_{2}, respectively and denote the original average velocity in km / h of the train by v.
The travelling time in hours of the train on Monday is hence $\frac{s_{1}}{v}+\frac{3 s_{2}}{v}$.
The weekend travelling time also in hours is
$\frac{s_{1}+19}{v}+\frac{3\left(s_{2}-19\right)}{v}$.
According to the condition about the difference of the two travelling times one can write
$\left(\frac{s_{1}}{v}+\frac{3 s_{2}}{v}\right)-\left(\frac{s_{1}+19}{v}+\frac{3\left(s_{2}-19\right)}{v}\right)=\frac{1}{2}$.
Solving the equation one gets the average velocity of the train: it is $v=76 \mathrm{~km} / \mathrm{h}$.

Total: 10 points
b)

$\begin{aligned} & \text { Type of the } \\ & \text { ticket } \end{aligned}$	$\begin{gathered} \text { Full } \\ \text { price } \end{gathered}$	$\begin{aligned} & \text { discount } \\ & \text { disc } \end{aligned}$	$\begin{gathered} 33 \% \\ \text { discount } \end{gathered}$	$\begin{gathered} \text { Co\% } \\ \text { discount } \end{gathered}$	$\begin{aligned} & \text { C7,5\% } \\ & \text { discount } \end{aligned}$	$\begin{gathered} \hline 75 \% \\ \text { discount } \end{gathered}$	$\begin{aligned} & \text { discount } \\ & \text { disc } \end{aligned}$	$\begin{gathered} 95 \% \\ \text { discount } \end{gathered}$	free
No. of passangers	84	18	44	110	11	35	31	29	38
$\begin{array}{\|l\|} \hline \text { Actual } \\ \text { Price (Ft) } \end{array}$	2000	1600	1340	1000	650	500	200	100	0
Filling th	table	rrectly						here are ults amo ual price more th hem, then be at m oint given. re are m n four foult ults then int can be	ulty the but four there If y iven.
The average ticket price in forints is$84 \cdot 2000+18 \cdot 1600+44 \cdot 1340+110 \cdot 1000+11 \cdot 650+35 \cdot 500+31 \cdot 200+29 \cdot 100+38 \cdot 0$									
400									
$\frac{399510}{400}=998.775(\approx 999 \mathrm{Ft} \text { or } 1000 \mathrm{Ft})$						2 points		The 2 points are due even if there are some wrong ones among the actual ticket prices but the method of	

		calculating their average is correct.
This is approxiamtely 50% of the full price and thus the discount on the average ticket price would be 50%.	2 points	The 2 points are due even if the candidate has performed correct calculations based on faulty data or if its different result is due to various rounding effects.
Total:	6 points	
8. a)		
$\bar{a}, \overline{a b}, \overline{b b a}$ are the consecutive terms of an arithmetic progression if and only if $\overline{b b a}-\overline{a b}=\overline{a b}-\bar{a}$.	1 point	
Switching to decimal notation one gets $(110 b+a)-(10 a+b)=(10 a+b)-a$	1 point	
Simplifying we obtain $a=6 b$.	1 point	
Since a and b are decimal digits, $a=6, b=1$.	2 points	
The three numbers are hence $6 ; 61 ; 116$, and the common difference is 55 .	1 point	
The sum of the first one hundred terms is $S_{100}=\frac{100}{2}(2 \cdot 6+99 \cdot 55)=272850$.	1 point	
Total:	7 points	
b)		
The first term of the geometric progression is a and its common ratio is q. If $q=1$ then the progression is constant and thus the corresponding sums are all equal, the three identical numbers are the consecutive terms of a geometric progression..		
If $q \neq 1$, then the sum of the first n terms is $S_{n}^{(1)}=a \cdot \frac{q^{n}-1}{q-1} .$	1 pont	
The sum of the second n terms is $S_{n}^{(2)}=a q^{n} \cdot \frac{q^{n}-1}{q-1}$.	2 points	
The sum of the third n terms is $S_{n}^{(3)}=a q^{2 n} \cdot \frac{q^{n}-1}{q-1}$.	2 points	
It is necessary and sufficient for these sums to form a geometric progression in this order if $\left(S_{n}^{(2)}\right)^{2}=S_{n}^{(1)} \cdot S_{n}^{(3)}$ holds.	1 point	
In fact, this is the case, since	2 points	

$S_{n}^{(1)} \cdot S_{n}^{(3)}=a^{2} q^{2 n} \cdot\left(\frac{q^{n}-1}{q-1}\right)^{2}=\left(a q^{n} \cdot \frac{q^{n}-1}{q-1}\right)^{2}=\left(S_{n}^{(2)}\right)^{2}$		
Total:	9 points	The last 3 point may be given for any correct argument.

9. a)		
If the first two numbers are a and $b(a<b)$, then the third number is $a+b$ and the fourth one is $2(a+b)$.	1 point	
By condition, we have $2(a+b) \leq 40$ that is $a+b \leq 20$.	1 point	
Here $a<b$ implies $a \leq 9$, that is the smallest number can be at most 9 .	2 points	
Total:	4 points	
b)		
There are two possible such quadruples.	2 points	
9, 10, 19, 38;	1 points	
9, 11, 20, 40.	1 points	
Total:	4 points	
c)		
The set of tickets filled by Andrew's rule can be grouped according to the choice of the first number. The first number is $\begin{array}{lllllllll} \hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 . \\ \hline \end{array}$	1 point	
The number of tickets are respectively: $\begin{array}{lllllllll}18 & 16 & 14 & 12 & 10 & 8 & 6 & 4 & 2 .\end{array}$	2 points	
The number of different tickets are hence $2+4+\ldots+18=90$.	1 point	
The number of quadruples that can be selected from the first 40 positive integers is $\binom{40}{4}=91390$.	2 points	
The probability of a bingo is hence $P=\frac{90}{91390} \approx 9,85 \cdot 10^{-4}$.	2 points	
Total:	8 points	

